Effects of Community Connectivity on the Spreading Process of Epidemics

Author:

Gao Zhongshe1,Gu Ziyu2,Yang Lixin2

Affiliation:

1. School of Mathematics and Statistics, Tianshui Normal University, Tianshui 741000, China

2. School of Mathematics and Data Science, Shaanxi University of Science & Technology, Xi’an 710021, China

Abstract

Community structure exists widely in real social networks. To investigate the effect of community structure on the spreading of infectious diseases, this paper proposes a community network model that considers both the connection rate and the number of connected edges. Based on the presented community network, a new SIRS transmission model is constructed via the mean-field theory. Furthermore, the basic reproduction number of the model is calculated via the next-generation matrix method. The results reveal that the connection rate and the number of connected edges of the community nodes play crucial roles in the spreading process of infectious diseases. Specifically, it is demonstrated that the basic reproduction number of the model decreases as the community strength increases. However, the density of infected individuals within the community increases as the community strength increases. For community networks with weak strength, infectious diseases are likely not to be eradicated and eventually will become endemic. Therefore, controlling the frequency and range of intercommunity contact will be an effective initiative to curb outbreaks of infectious diseases throughout the network. Our results can provide a theoretical basis for preventing and controlling the spreading of infectious diseases.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3