Recognition of Ellipsoid-like Herbaceous Tibetan Medicinal Materials Using DenseNet with Attention and ILBP-Encoded Gabor Features

Author:

Zhou Liyuan1,Gao Hongmei1,Gao Dingguo1,Zhao Qijun1

Affiliation:

1. School of Information Science and Technology, Tibet University, Lhasa 850011, China

Abstract

Tibetan medicinal materials play a significant role in Tibetan culture. However, some types of Tibetan medicinal materials share similar shapes and colors, but possess different medicinal properties and functions. The incorrect use of such medicinal materials may lead to poisoning, delayed treatment, and potentially severe consequences for patients. Historically, the identification of ellipsoid-like herbaceous Tibetan medicinal materials has relied on manual identification methods, including observation, touching, tasting, and nasal smell, which heavily rely on the technicians’ accumulated experience and are prone to errors. In this paper, we propose an image-recognition method for ellipsoid-like herbaceous Tibetan medicinal materials that combines texture feature extraction and a deep-learning network. We created an image dataset consisting of 3200 images of 18 types of ellipsoid-like Tibetan medicinal materials. Due to the complex background and high similarity in the shape and color of the ellipsoid-like herbaceous Tibetan medicinal materials in the images, we conducted a multi-feature fusion experiment on the shape, color, and texture features of these materials. To leverage the importance of texture features, we utilized an improved LBP (local binary pattern) algorithm to encode the texture features extracted by the Gabor algorithm. We inputted the final features into the DenseNet network to recognize the images of the ellipsoid-like herbaceous Tibetan medicinal materials. Our approach focuses on extracting important texture information while ignoring irrelevant information such as background clutter to eliminate interference and improve recognition performance. The experimental results show that our proposed method achieved a recognition accuracy of 93.67% on the original dataset and 95.11% on the augmented dataset. In conclusion, our proposed method could aid in the identification and authentication of ellipsoid-like herbaceous Tibetan medicinal materials, reducing errors and ensuring the safe use of Tibetan medicinal materials in healthcare.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference56 articles.

1. Geng, Z. (2019). Research on Intellectual Property Legal Protection of Traditional Tibetan Medicine in Tibet, Tibet University.

2. Application and Prospect of Computer Vision in the Field of Traditional Chinese Medicine;Shi;J. Tex. Coll.,2020

3. Intelligent Identification of Fritillaria, Hawthorn and Pinellia Decoction Pieces Based on Deep Learning Algorithm;Wu;Chin. J. Exp.,2020

4. A Review and Case Study of Computer Vision Based Traditional Chinese Medicine Slice Classification Technology;Zhang;Comput. Appl.,2022

5. Chinese Herbal Medicine Retrieval Method Based on Shape Feature and Texture Feature;Zhu;Comput. Eng. Des.,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3