Impacts of a LVRT Control Strategy of Offshore Wind Farms on the HTS Power Cable

Author:

Nguyen Thai-ThanhORCID,Kim Hak-ManORCID,Yang Hyung Suk

Abstract

High temperature superconducting (HTS) power cables are a potential solution for the grid integration of offshore wind farms since the HTS cable can conduct bulk wind power at low voltage levels. However, the transient current through the HTS cable in cases of low voltage ride through (LVRT) operation has a negative impact on the HTS cable operation due to the quenching phenomenon. This paper analyzes the impact of LVRT control strategies on the HTS cable operation. In addition, a coordinated control of wind turbines for LVRT improvement of an offshore wind farm is proposed. The feasibility of the HTS cable application for the grid connection of offshore wind farms is also discussed in this study. The proposed controller is designed for the wind turbine generator based on a type-4 permanent magnet synchronous generator. In the proposed controller, the transient current through the HTS cable is reduced by regulating the machine side power during fault conditions. The feasibility of the proposed controller is validated in the PSCAD/EMTDC program (Manitoba Hydro International Ltd., Winnipeg, Manitoba, Canada, version 4.2.1). The effects of transient current on the cable temperatures and resistances are analyzed in this study. Simulation results show that the proposed control strategy could reduce the transient current and temperature rise of the HTS cable.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3