Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles

Author:

Fachrizal RezaORCID,Munkhammar JoakimORCID

Abstract

The integration of photovoltaic (PV) and electric vehicle (EV) charging in residential buildings has increased in recent years. At high latitudes, both pose new challenges to the residential power systems due to the negative correlation between household load and PV power production and the increase in household peak load by EV charging. EV smart charging schemes can be an option to overcome these challenges. This paper presents a distributed and a centralized EV smart charging scheme for residential buildings based on installed photovoltaic (PV) power output and household electricity consumption. The proposed smart charging schemes are designed to determine the optimal EV charging schedules with the objective to minimize the net load variability or to flatten the net load profile. Minimizing the net load variability implies both increasing the PV self-consumption and reducing the peak loads. The charging scheduling problems are formulated and solved with quadratic programming approaches. The departure and arrival time and the distance covered by vehicles in each trip are specifically modeled based on available statistical data from the Swedish travel survey. The schemes are applied on simulated typical Swedish detached houses without electric heating. Results show that both improved PV self-consumption and peak load reduction are achieved. The aggregation of distributed smart charging in multiple households is conducted, and the results are compared to the smart charging for a single household. On the community level, both results from distributed and centralized charging approaches are compared.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference43 articles.

1. Global Warming of 1.5 °C,2019

2. Climate Change 2014 Mitigation of Climate Change,2014

3. Realizing the electric-vehicle revolution

4. Global Energy & CO2 Status Report,2017

5. Plug-in electric vehicles in electric distribution networks: A review of smart charging approaches

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3