Abstract
This study proposes a novel three-port bidirectional converter with a three-winding coupled inductor and applies it to a photovoltaic (PV) system to step up the PV system output to a dc bus or dc load while charging the battery. When the PV output is insufficient, battery voltage is stepped up to the dc bus voltage, and when the dc bus has excess energy, it is stepped down to charge the battery. Thus, a three-port bidirectional high step-up/step-down converter is achieved. A three-winding common core coupled inductor is designed and implemented in the converter, and a full-wave doubler circuit is used on the high-voltage side to achieve a high step-up effect. Power switches and diodes in the circuit are shared to achieve bidirectional operation. The output capacitors recover secondary-side leakage inductance energy in the step-up mode, and the third winding can be used to recover primary-side leakage inductance energy to reduce the voltage spike on switching in order to improve the converter’s conversion efficiency. A 500-W three-port bidirectional converter is implemented to verify the feasibility and practicability of the proposed topology. According to the measurement results, the highest efficiency of the PV step-up mode is 95.3%, the highest efficiency of the battery step-up mode is 94.1%, and the highest efficiency of the step-down mode is 94.8%.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献