Abstract
Heat pumps in combination with a photovoltaic system are a very promising option for the transformation of the energy system. By using such a system for coupling the electricity and heat sectors, buildings can be heated sustainably and with low greenhouse gas emissions. This paper reveals a method for dimensioning a suitable system of heat pump and photovoltaics (PV) for residential buildings in order to achieve a high level of (photovoltaic) PV self-consumption. This is accomplished by utilizing a thermal energy storage (TES) for shifting the operation of the heat pump to times of high PV power production by an intelligent control algorithm, which yields a high portion of PV power directly utilized by the heat pump. In order to cover the existing set of building infrastructure, 4 reference buildings with different years of construction are introduced for both single- and multi-family residential buildings. By this means, older buildings with radiator heating as well as new buildings with floor heating systems are included. The simulations for evaluating the performance of a heat pump/PV system controlled by the novel algorithm for each type of building were carried out in MATLAB-Simulink® 2017a. The results show that 25.3% up to 41.0% of the buildings’ electricity consumption including the heat pump can be covered directly from the PV-installation per year. Evidently, the characteristics of the heating system significantly influence the results: new buildings with floor heating and low supply temperatures yield a higher level of PV self-consumption due to a higher efficiency of the heat pump compared to buildings with radiator heating and higher supply temperatures. In addition, the effect of adding a battery to the system was studied for two building types. It will be shown that the degree of PV self-consumption increases in case a battery is present. However, due to the high investment costs of batteries, they do not pay off within a reasonable period.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference32 articles.
1. The Paris Agreement|UNFCCC, 29 January 2016https://unfccc.int/files/meetings/paris_nov_2015/application/vnd.openxmlformats-officedocument.wordprocessingml.document/cp10a1_en.docx
2. Intergovernmental Panel on Climate Change IPCC, Summary for Policymakers of IPCC Special Report on Global Warming of 1.5 °C approved by governments, 8 October 2018https://www.ipcc.ch/2018/10/08/summary-for-policymakers-of-ipcc-special-report-on-global-warming-of-1-5c-approved-by-governments/
3. Umweltbundesamt, Erneuerbare Energien in Zahlen, 15 March 2019https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen#statusquo
4. Modelling and Simulation of Underfloor Heating System Supplied from Heat Pump
5. Simulation, implementation and monitoring of heat pump load shifting using a predictive controller
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献