Author:
Xiong Linyun,Li Penghan,Wang Chao,Huang Sunhua,Wang Jie
Abstract
This paper proposes an adaptive droop gain-based consensus approach for reactive power sharing in microgrids (MGs) with the event triggered communication protocol (ETCP). A multi-agent system-based network is constructed to establish the communication with distributed generators (DGs) in MGs. An ETCP is proposed to reduce the communication among agents to save resources and improve system reliability, as the communication is only needed when the event triggered condition is fulfilled. A stability analysis is conducted to guarantee the existence of the equilibrium point and the freeness of the Zeno solution. Moreover, an adaptive droop gain is designed to reduce the impact of imbalanced feeder impedances. Four case studies are conducted to verify the effectiveness and performance of the proposed method. The simulation results show that the ETCP-based approach is capable of achieving power sharing consensus, communication reduction and shifting the information exchange mode based on the operation scenarios.
Funder
Natural Science Foundation of Chongqing
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献