Enhancing Literature Review Efficiency: A Case Study on Using Fine-Tuned BERT for Classifying Focused Ultrasound-Related Articles

Author:

Panagides Reanna K.1,Fu Sean H.2,Jung Skye H.1,Singh Abhishek1,Eluvathingal Muttikkal Rose T.1,Broad R. Michael2ORCID,Meakem Timothy D.2,Hamilton Rick A.2

Affiliation:

1. School of Data Science, University of Virginia, Charlottesville, VA 22903, USA

2. Focused Ultrasound Foundation, Charlottesville, VA 22903, USA

Abstract

Over the past decade, focused ultrasound (FUS) has emerged as a promising therapeutic modality for various medical conditions. However, the exponential growth in the published literature on FUS therapies has made the literature review process increasingly time-consuming, inefficient, and error-prone. Machine learning approaches offer a promising solution to address these challenges. Therefore, the purpose of our study is to (1) explore and compare machine learning techniques for the text classification of scientific abstracts, and (2) integrate these machine learning techniques into the conventional literature review process. A classified dataset of 3588 scientific abstracts related and unrelated to FUS therapies sourced from the PubMed database was used to train various traditional machine learning and deep learning models. The fine-tuned Bio-ClinicalBERT (Bidirectional Encoder Representations from Transformers) model, which we named FusBERT, had comparatively optimal performance metrics with an accuracy of 0.91, a precision of 0.85, a recall of 0.99, and an F1 of 0.91. FusBERT was then successfully integrated into the literature review process. Ultimately, the integration of this model into the literature review pipeline will reduce the number of irrelevant manuscripts that the clinical team must screen, facilitating efficient access to emerging findings in the field.

Funder

Focused Ultrasound Foundation, Charlottesville, Virginia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3