Abstract
We used photoluminescence spectra of single electron quasi-two-dimensional InP/GaInP2 islands having Wigner-Seitz radius ~4 to measure the magnetic-field dispersion of the lowest s, p, and d single-particle states in the range 0–10 T. The measured dispersion revealed up to a nine-fold reduction of the cyclotron frequency, indicating the formation of nano-superconducting anyon or magneto-electron (em) states, in which the corresponding number of magnetic-flux-quanta vortexes and fractional charge were self-generated. We observed a linear increase in the number of vortexes versus the island size, which corresponded to a critical vortex radius equal to the Bohr radius and closed-packed topological vortex arrangements. Our observation explains the microscopic mechanism of vortex attachment in composite fermion theory of the fractional quantum Hall effect, allows its description in terms of self-localization of ems and represents progress towards the goal of engineering anyon properties for fault-tolerant topological quantum gates.
Funder
Russian Science Foundation
Subject
General Materials Science,General Chemical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献