Abstract
A FePt(B, Ag, C) granular film was formed from post-annealed B4C(1.0 nm)/FePt(Ag, C) layers at a substrate temperature of 470 °C for 2 min. The 6 nm thick FePt(B, Ag, C) film demonstrates high perpendicular magnetic anisotropy (Ku = 2.83 × 107 erg/cm3 at 100 K) and out-of-plane coercivity (Hc = 38.0 kOe at 100 K). The Ku and out-of-plane Hc are respectively increased from 38% and 46% between 350 K and 50 K. The sample with a thickness of 8 nm also shows a similar trend for magnetic properties; however, the tiny magnetization kink which may come from rare Fe-B or disordered FePt grains was observed in the easy axis loop. The intrinsic (ΔHint = 12.6 kOe) and extrinsic switching field distribution (ΔHext = 1.62 kOe) were characterized by major and minor loops to correlate the microstructural grains. The coupled FePt grains grown on a single MgTiON grain were observed in a high-resolution transmission electron microstructure (HRTEM) image. This small intergranular exchange coupling was defined by estimating the magnetic cluster size (46.6 nm) from ΔHext and the average grains size (28.2 nm) from TEM images. The temperature dependence of coercivity was fitted to further understand the magnetization reversal process. The lower microstructural parameter was evidenced in the imperfect grain morphology.
Subject
General Materials Science,General Chemical Engineering
Reference25 articles.
1. L10 FePt Granular Films for Heat-Assisted Magnetic Recording Media;Hono,2016
2. Review Article: FePt heat assisted magnetic recording media
3. Development of Media Nanostructure for Perpendicular Magnetic Recording
4. L10
FePtX-Y media for heat-assisted magnetic recording
5. High-Density Heat-Assisted Magnetic Recording Media and Advanced Characterization—Progress and Challenges;Ju;IEEE. Trans. Magn.,2015
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献