Temperature Dependence and Microstructure Effects on Magnetic Properties of FePt(B, Ag, C) Film

Author:

Tsai Jai-LinORCID,Weng Shi-Min,Dai Cheng,Chen Jyun-You,Lu Xue-Chang,Hsu Ting-Wei

Abstract

A FePt(B, Ag, C) granular film was formed from post-annealed B4C(1.0 nm)/FePt(Ag, C) layers at a substrate temperature of 470 °C for 2 min. The 6 nm thick FePt(B, Ag, C) film demonstrates high perpendicular magnetic anisotropy (Ku = 2.83 × 107 erg/cm3 at 100 K) and out-of-plane coercivity (Hc = 38.0 kOe at 100 K). The Ku and out-of-plane Hc are respectively increased from 38% and 46% between 350 K and 50 K. The sample with a thickness of 8 nm also shows a similar trend for magnetic properties; however, the tiny magnetization kink which may come from rare Fe-B or disordered FePt grains was observed in the easy axis loop. The intrinsic (ΔHint = 12.6 kOe) and extrinsic switching field distribution (ΔHext = 1.62 kOe) were characterized by major and minor loops to correlate the microstructural grains. The coupled FePt grains grown on a single MgTiON grain were observed in a high-resolution transmission electron microstructure (HRTEM) image. This small intergranular exchange coupling was defined by estimating the magnetic cluster size (46.6 nm) from ΔHext and the average grains size (28.2 nm) from TEM images. The temperature dependence of coercivity was fitted to further understand the magnetization reversal process. The lower microstructural parameter was evidenced in the imperfect grain morphology.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference25 articles.

1. L10 FePt Granular Films for Heat-Assisted Magnetic Recording Media;Hono,2016

2. Review Article: FePt heat assisted magnetic recording media

3. Development of Media Nanostructure for Perpendicular Magnetic Recording

4. L10 FePtX-Y media for heat-assisted magnetic recording

5. High-Density Heat-Assisted Magnetic Recording Media and Advanced Characterization—Progress and Challenges;Ju;IEEE. Trans. Magn.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3