Starch-Capped AgNPs’ as Potential Cytotoxic Agents against Prostate Cancer Cells

Author:

Morais Mariana,Machado VeraORCID,Dias Francisca,Palmeira Carlos,Martins Gabriela,Fonseca Magda,Martins Catarina S. M.ORCID,Teixeira Ana LuísaORCID,Prior João A. V.ORCID,Medeiros RuiORCID

Abstract

One of the major therapeutic approaches of prostate cancer (PC) is androgen deprivation therapy (ADT), but patients develop resistance within 2–3 years, making the development of new therapeutic approaches of great importance. Silver nanoparticles (AgNPs) synthesized through green approaches have been studied as anticancer agents because of their physical-chemical properties. This study explored the cytotoxic capacity of starch-capped AgNPs, synthesized through green methods, in LNCaP and in PC-3 cells, a hormonal-sensitive and hormone-resistant PC cell line, respectively. These AgNPs were synthesized in a microwave pressurized synthesizer and characterized by ultraviolet-visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). Their cytotoxicity was assessed regarding their ability to alter morphological aspect (optical microscopy), induce damage in cytoplasmic membrane (Trypan Blue Assay), mitochondria (WST-1 assay), cellular proliferation (BrdU assay), and cell cycle (Propidium iodide and flow-cytometry). AgNPs showed surface plasmon resonance (SPR) of approximately 408 nm and average size of 3 nm. The starch-capped AgNPs successfully induced damage in cytoplasmic membrane and mitochondria, at concentrations equal and above 20 ppm. These damages lead to cell cycle arrest in G0/G1 and G2/M, blockage of proliferation and death in LNCaP and PC-3 cells, respectively. This data shows these AgNPs’ potential as anticancer agents for the different stages of PC.

Funder

Liga Portuguesa Contra o Cancro

European Regional Development Fund

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3