Abstract
Cellulose nanofiber (CNF) and hybrid zeolite imidazole framework (HZ) are an emerging biomaterial and a porous carbonous material, respectively. The composite of these two materials could have versatile physiochemical characteristics. A cellulose nanofiber and cobalt-containing zeolite framework-based composite was prepared using an in-situ and eco-friendly chemical method followed by pyrolysis. The composite was comprised of cobalt nanoparticles decorated on highly graphitized N-doped nanoporous carbons (NPC) wrapped with carbon nanotubes (CNTs) produced from the direct carbonization of HZ. By varying the ratio of CNF in the composite, we determined the optimal concentration and characterized the derived samples using sophisticated techniques. Scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS) confirmed the functionalization of CNF in the metallic cobalt-covered N-doped NPC wrapped with CNTs. The CNF–HZNPC composite electrodes show superior electrochemical performance, which is suitable for supercapacitor applications; its specific capacitance is 146 F/g at 1 A/g. Furthermore, the composite electrodes retain a cycling stability of about 90% over 2000 charge–discharge cycles at 10 A/g. The superior electrochemical properties of the cellulose make it a promising candidate for developing electrodes for energy storage applications.
Funder
Ministry of Science, ICT & Future Planning
Subject
General Materials Science,General Chemical Engineering
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献