Abstract
Germanium/germanium oxide nanoparticles with theoretically high discharge capacities of 1624 and 2152 mAh/g have attracted significant research interest for their potential application as anode materials in Li-ion batteries. However, these materials exhibit poor long-term performance due to the large volume change of 370% during charge/discharge cycles. In the present study, to overcome this shortcoming, a Ge/GeO2/graphene composite material was synthesized. Ge/GeO2 nanoparticles were trapped between matrices of graphene nanosheets to offset the volume expansion effect. Transmission electron microscopy images revealed that the Ge/GeO2 nanoparticles were distributed on the graphene nanosheets. Discharge/charge experiments were performed to evaluate the Li storage properties of the samples. The discharge capacity of the bare Ge/GeO2 nanoparticles in the first discharge cycle was considerably large; however, the value decreased rapidly with successive cycles. Conversely, the present Ge/GeO2/graphene composite exhibited superior cycling stability.
Funder
National Research Foundation of Korea
Subject
General Materials Science,General Chemical Engineering
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献