Lead-Free Metal Halide Perovskites for Hydrogen Evolution from Aqueous Solutions

Author:

Armenise VincenzaORCID,Colella Silvia,Fracassi Francesco,Listorti AndreaORCID

Abstract

Metal halide perovskites (MHPs) exploitation represents the next big frontier in photovoltaic technologies. However, the extraordinary optoelectronic properties of these materials also call for alternative utilizations, such as in solar-driven photocatalysis, to better address the big challenges ahead for eco-sustainable human activities. In this contest the recent reports on MHPs structures, especially those stable in aqueous solutions, suggest the exciting possibility for efficient solar-driven perovskite-based hydrogen (H2) production. In this minireview such works are critically analyzed and classified according to their mechanism and working conditions. We focus on lead-free materials, because of the environmental issue represented by lead containing material, especially if exploited in aqueous medium, thus it is important to avoid its presence from the technology take-off. Particular emphasis is dedicated to the materials composition/structure impacting on this catalytic process. The rationalization of the distinctive traits characterizing MHPs-based H2 production could assist the future expansion of the field, supporting the path towards a new class of light-driven catalysts working in aqueous environments.

Funder

PON CLOSE

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3