Interactions of a Water-Soluble Glycofullerene with Glucose Transporter 1. Analysis of the Cellular Effects on a Pancreatic Tumor Model

Author:

Barańska Edyta,Wiecheć-Cudak Olga,Rak Monika,Bienia AleksandraORCID,Mrozek-Wilczkiewicz Anna,Krzykawska-Serda MartynaORCID,Serda MaciejORCID

Abstract

In recent years, carbon nanomaterials have been intensively investigated for their possible applications in biomedical studies, especially as drug delivery vehicles. Several surface modifications can modulate the unique molecular structure of [60]fullerene derivatives, as well as their physicochemical properties. For this reason, covalent modifications that would enable a greater water solubilization of the fullerene buckyball have been rapidly investigated. The most exciting applications of fullerene nanomaterials are as drug delivery vectors, photosensitizers in photodynamic therapy (PDT), astransfection or MRI contrast agents, antimicrobials and antioxidants. From these perspectives, the glucose derivatives of [60]fullerene seem to be an interesting carbon nanomaterial for biological studies. It is well-known that cancer cells are characterized by an increased glucose uptake and it has also been previously reported that the glucose transporters (GLUTs) are overexpressed in several types of cancers, which make them attractive molecular targets for many drugs. This study explored the use of a highly water-soluble glycofullerene (called Sweet-C60) in pancreatic cancer studies. Here, we describe the PANC-1 cell proliferation, migration, metabolic activity and glycolysis rate after incubations with different concentrations of Sweet-C60. The final results did not show any influence of the Sweet-C60 on various cancer cellular events and glycolysis, suggesting that synthesized glycofullerene is a promising drug delivery vehicle for treating pancreatic cancer.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3