Integrated IoT-Based Secure and Efficient Key Management Framework Using Hashgraphs for Autonomous Vehicles to Ensure Road Safety

Author:

Jha SudanORCID,Jha Nishant,Prashar DeepakORCID,Ahmad SultanORCID,Alouffi BaderORCID,Alharbi Abdullah

Abstract

Autonomous vehicles offer various advantages to both vehicle owners and automobile companies. However, despite the advantages, there are various risks associated with these vehicles. These vehicles interact with each other by forming a vehicular network, also known as VANET, in a centralized manner. This centralized network is vulnerable to cyber-attacks which can cause data loss, resulting in road accidents. Thus, to prevent the vehicular network from being attacked and to prevent the privacy of the data, key management is used. However, key management alone over a centralized network is not effective in ensuring data integrity in a vehicular network. To resolve this issue, various studies have introduced a blockchain-based approach and enabled key management over a decentralized network. This technique is also found effective in ensuring the privacy of all the stakeholders involved in a vehicular network. Furthermore, a blockchain-based key management system can also help in storing a large amount of data over a distributed network, which can encourage a faster exchange of information between vehicles in a network. However, there are certain limitations of blockchain technology that may affect the efficient working of autonomous vehicles. Most of the existing blockchain-based systems are implemented over Ethereum or Bitcoin. The transaction-processing capability of these blockchains is in the range of 5 to 20 transactions per second, whereas hashgraphs are capable of processing thousands of transactions per second as the data are processed exponentially. Furthermore, a hashgraph prevents the user from altering the order of the transactions being processed, and they do not need high computational powers to operate, which may help in reducing the overall cost of the system. Due to the advantages offered by a hashgraph, an advanced key management framework based on a hashgraph for secure communication between the vehicles is suggested in this paper. The framework is developed using the concept of Leaving of Vehicles based on a Logical Key Hierarchy (LKH) and Batch Rekeying. The system is tested and compared with other closely related systems on the basis of the transaction compilation time and change in traffic rates.

Funder

Taif University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference42 articles.

1. Blockchain-Based Dynamic Key Management for Heterogeneous Intelligent Transportation Systems

2. Self-Driving Cars Could Reduce Accidents by 90%, Saving $190B—Goliathhttps://www.goliath.com/tech/self-driving-cars-could-reduce-accidents-by-90-saving-190b/

3. Dynamic Key Management for Secure Heterogeneous Vehicular Communication Systems;Lei,2017

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3