Practical Grammar Compression Based on Maximal Repeats

Author:

Furuya IsamuORCID,Takagi Takuya,Nakashima Yuto,Inenaga Shunsuke,Bannai Hideo,Kida TakuyaORCID

Abstract

This study presents an analysis of RePair, which is a grammar compression algorithm known for its simple scheme, while also being practically effective. First, we show that the main process of RePair, that is, the step by step substitution of the most frequent symbol pairs, works within the corresponding most frequent maximal repeats. Then, we reveal the relation between maximal repeats and grammars constructed by RePair. On the basis of this analysis, we further propose a novel variant of RePair, called MR-RePair, which considers the one-time substitution of the most frequent maximal repeats instead of the consecutive substitution of the most frequent pairs. The results of the experiments comparing the size of constructed grammars and execution time of RePair and MR-RePair on several text corpora demonstrate that MR-RePair constructs more compact grammars than RePair does, especially for highly repetitive texts.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3