Abstract
The marine microalgae Tetraselmis striata was cultivated in drilling waters with different salinities. Growth substrate optimization was performed while the effects of different pH, temperature, photoperiod and CO2 flow rate on biomass productivity and its composition were studied. Results showed that the strain grew better in 2.8% drilling waters employing the fertilizer Nutri-Leaf together with ΝaHCO3. A pH value of 8 resulted in high biomass productivity (79.8 mg L−1 d−1) and biomass composition (proteins 51.2% d.w., carbohydrates 14.6% d.w., lipids 27.8% d.w. and total chlorophylls 5.1% d.w.). The optimum cultivation temperature was found to be 25 ± 1 °C which further enhanced biomass productivity (93.7 mg L−1 d−1) and composition (proteins 38.7% d.w., carbohydrates 20.4% d.w., lipids 30.2% d.w., total chlorophylls 5.1% d.w.). Photoperiod experiments showed that continuous illumination was essential for biomass production. A 10 mL min−1 flow rate of CO2 lead to biomass productivity of 87.5 mg L−1 d−1 and high intracellular content (proteins 44.6% d.w., carbohydrates 10.3% d.w., lipids 27.3% d.w., total chlorophylls 5.2% d.w.). Applying the optimum growth conditions, the produced biomass presented high protein content with adequate amino acids and high percentages of eicosapentaenoic acid (EPA), indicating its suitability for incorporation into conventional fish feeds. In addition, this study analyzed how functional parameters may influence the uptake of nutrients by Tetraselmis.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献