Abstract
Online detection of fatigued wear debris in the lubricants of aero-engines can provide warning of engine failure during flight, thus having great economic and social benefits. In this paper, we propose a capacitance array sensor and a hyper-heuristic partial differential equation (PDE) inversion method for detecting multiple micro-scale metal debris, combined with self-adaptive cellular genetic (SA-CGA) and morphological algorithms. Firstly, different from the traditional methods, which are limited in multi-induction-Dirac-boundary-inversion, a mathematical model with non-local boundary conditions is established. Furthermore, a hyper-heuristic method based on prior knowledge is also proposed to extract the wear character. Moreover, a 12-plate array circulating sensor and corresponding detection system are designed. The experimental results were compared with the optical microscopy. The results show that under the conditions of 1~3 wear debris with diameters of between 250–900 μm, the accuracy of the proposed method is 10–38% higher than those of the traditional methods. The recognition error of the wear debris counts decreases to 0.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献