Effects of Climatic Variability on Soil Water Content in an Alpine Kobresia Meadow, Northern Qinghai–Tibetan Plateau, China

Author:

Si Mengke,Guo XiaoweiORCID,Lan Yuting,Fan Bo,Cao Guangmin

Abstract

Soil moisture dynamics play an active role in ecological and hydrological processes. Although the variation of the soil water moisture of multiple ecosystems have been well-documented, few studies have focused on soil hydrological properties by using a drying and weighing method in a long time series basis in the Qinghai-Tibet Plateau (QTP). In this study, 13 year (2008–2020) time-series observational soil moisture data and environmental factors were analyzed in a humid alpine Kobresia meadow on the Northern Qinghai–Tibetan Plateau. The results showed no significant upward trend in soil water content during the 2008–2020 period. In the growth season (May–October), the soil water content showed a trend of decreasing firstly, then increasing, and finally, decreasing. Correlation analysis revealed that five meteorology factors (temperature, humidity, net radiation, dew point temperature, and vapor pressure) and a biomass element (above-ground biomass) had a significant effect on the soil moisture, and air temperature impacted the soil water variation negatively in 0–50 cm, indicating that global warming would reduce soil moisture. Humidity and net radiation made a difference on shallow soil (0–10 cm), while dew point temperature and vapor pressure played a role on the deep soil (30–50 cm). Above-ground biomass only effected 30–50 cm soil moisture variation, and underground biomass had little effect on the soil moisture variation. This indirectly indicated that below-ground biomass is not limited by soil moisture. These results provide new insights for the rational allocation of water resources and management of vegetation in alpine meadows, in the context of climate change.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3