Comparison of the Effects of Monounsaturated Fatty Acids and Polyunsaturated Fatty Acids on Liver Lipid Disorders in Obese Mice

Author:

Liu Wen1,Zhu Min1,Gong Meng23,Zheng Wen3,Zeng Xin1ORCID,Zheng Qing1,Li Xiaoyu2,Fu Fudong2,Chen Yingyi4,Cheng Jingqiu12,Rao Zhiyong4ORCID,Lu Yanrong1,Chen Younan12

Affiliation:

1. Department of Clinical Nutrition and Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China

2. Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, China

3. Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China

4. Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu 610041, China

Abstract

Obesity is a recognized epidemic worldwide, and the accumulation of excess free saturated fatty acids (SFAs) in cells induces cellular lipotoxic damage and increases the risk of a wide spectrum of metabolic diseases including type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD). Monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) have been reported to combat SFA-induced cellular damage. However, the comparative studies of the two types of unsaturated fatty acids (UFAs) are still limited. We investigated the effects of different MUFAs and PUFAs in the human hepatocyte line L-02 cells in vitro, and in high-fat-diet (HFD)-induced obese C57BL/6 mice in vivo. The results of the in vitro study showed that SFAs induced significant cellular lipotoxic damage, but the combination of MUFAs/PUFAs with SFAs significantly improved the impaired cell viability. Particularly, oleic acid (OA) was superior to eicosapentaenoic acid (EPA), Docosahexaenoic acid (DHA), and arachidonic acid (AA) in terms of its anti-apoptotic effect and inhibition of endoplasmic reticulum (ER) stress. In vivo, both olive-oil-enriched (HFD + OO) and fish-oil-enriched high-fat diets (HFD + FO) reduced hepatic steatosis and improved insulin sensitivity in obese mice. However, FO induced an abnormal increase in serum aspartate aminotransferase (AST) and an increase in the oxidative stress indicator Malondialdehyde (MDA). Liver-targeted lipidomic analysis showed that liver lipid metabolites under the two types of UFA dietary interventions differed from the HFD group, modulating the abundance of some lipid metabolites such as triglycerides (TGs) and glycerophospholipids. Furthermore, the FO diet significantly increased the abundance of the associated FA 20:5 long-chain lipid metabolites, whereas the OO diet regulated the unsaturation of all fatty acids in general and increased the abundance of FA 18:1 in the overall lipid metabolites, especially TGs, which may primarily contribute to the FO, and OO drove protection in NAFLD.

Funder

National Natural Science Foundation of China

Science and Technology Department of Sichuan Province project funding

1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3