Enhanced Energy Savings in Indoor Environments with Effective Daylight Utilization and Area Segregation

Author:

Haq Mohammad Asif ulORCID,Islam AminulORCID,Shihavuddin ASMORCID,Maruf Md Hasan,Al Mansur AhmedORCID,Hassan Mohammad Yusri

Abstract

Daylight utilization is one of the key areas for energy savings in indoor environments. An important factor often not considered by the existing daylight utilization approaches is the segregation of the floor into task areas and non-task areas. It is also observed that the inherent asymmetry in the daylight penetration pattern in most indoor environments is not given consideration while designing artificial lighting arrangements. Moreover, daily and annual daylight availability is found to have a symmetrical variation pattern, which is a significant factor often overlooked in utilizing daylight. Thus, the energy assessment can be inaccurate, leading to an incorrect or impractical evaluation of energy savings. This research proposes a comprehensive new approach to assess the energy-saving potential of daylight utilization in indoor environments. This new method combines two approaches to overcome the aforementioned issues. (1) The considered area is segmented into task area and non-task areas (or surrounding area) and considers different levels of required illuminance for each separate area. (2) The variation of available daylight at the considered location is accounted for by dividing the daylight penetration into multiple levels. For the study, the method is first applied to a simulated office space considering real-life parameters, where the annual energy savings were estimated at 83.67%. For further validation, a comparison with a case from an existing method was also carried out, and the proposed method gave an energy saving estimation of 73.45%. This indicates a 10% higher energy saving estimation as compared to the original study, against which the proposed method was compared.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy savings evaluation of enhanced classroom daylighting utilization;Energy and Buildings;2024-06

2. Investigation of PV Modules Electrical Characteristics for Laboratory Experiments using Halogen Solar Simulator;2020 2nd International Conference on Sustainable Technologies for Industry 4.0 (STI);2020-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3