Bound Electron Transitions under the Influence of Electromagnetic Wave in Constant Magnetic Field

Author:

Zhukovsky Vladimir

Abstract

Motion and radiative transitions of an electron in a magnetic field under the influence of an external electromagnetic wave are studied for various confining conditions in semiconductor, graphene, in quantum wells, and relativistic generalization in terms of the Klein–Gordon equation are considered. In particular, the following problems are discussed. The so-called cyclotron resonance, which may appear in graphene, is studied with indication for appearance of the so-called frequency-halving. The problem is solved for two-dimensional massless charged particle, whose gapless nature is protected by sublattice symmetry. The exact classical calculation of this effect is undertaken in the framework of a 2D classical equation for a zero-mass electron. We also find an exact solution of the Schrödinger equation for charge carriers in semiconductors under the influence of an external magnetic field and in the field of electromagnetic wave with an account for their radiative transitions. Solutions of the relativistic Klein–Gordon equation in this configuration of electromagnetic fields are found as a certain generalization of the results obtained for the non-relativistic case. These results may serve as a first step for further efforts to find exact solutions of wave equations for quasiparticles in solid state structures in external fields.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference34 articles.

1. Radiation from Relativistic Electrons;Sokolov,1986

2. Synchrotron Radiaton;Sokolov,1968

3. Synchrotron Radiation Theory and Its Development: In Memory of I. M. Ternov,1999

4. Quantum transitions of relativistic electrons in a superstrong magnetic field

5. Synchrotron radiation from relativistic electrons in intense magnetic fields, Izvestiya Vysshikh Uchebnykh Zavedenii;Sokolov;Fizika,1975

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3