Separability of the Planar 1/ρ2 Potential in Multiple Coordinate Systems

Author:

DeCosta Richard,Altschul BrettORCID

Abstract

With a number of special Hamiltonians, solutions of the Schrödinger equation may be found by separation of variables in more than one coordinate system. The class of potentials involved includes a number of important examples, including the isotropic harmonic oscillator and the Coulomb potential. Multiply separable Hamiltonians exhibit a number of interesting features, including “accidental” degeneracies in their bound state spectra and often classical bound state orbits that always close. We examine another potential, for which the Schrödinger equation is separable in both cylindrical and parabolic coordinates: A z-independent V∝1/ρ2=1/(x2+y2) in three dimensions. All the persistent, bound classical orbits in this potential close, because all other orbits with negative energies fall to the center at ρ=0. When separated in parabolic coordinates, the Schrödinger equation splits into three individual equations, two of which are equivalent to the radial equation in a Coulomb potential—one equation with an attractive potential, the other with an equally strong repulsive potential.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3