Abstract
In this paper, we define a gyrogeometric mean on the Einstein gyrovector space. It satisfies several properties one would expect for means. For example, it is permutation-invariant and left-translation invariant. It is already known that the Einstein gyrogroup is a gyrocommutative gyrogroup. We give an alternative proof which depends only on an elementary calculation.
Funder
Japan Society for the Promotion of Science
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference5 articles.
1. Analytic Hyperbolic Geometry and Albert Einstein’s Special Theory of Relativity;Ungar,2008
2. Einstein Gyrogroup as a B-loop
3. Riemannian geometry and matrix geometric means
4. Geometric means
5. A gyrovector space approach to hyperbolic geometry;Ungar,2009
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献