Rational Transfer Function Model for a Double-Pipe Parallel-Flow Heat Exchanger

Author:

Bartecki KrzysztofORCID

Abstract

Transfer functions of typical heat exchangers, resulting from their partial differential equations, usually contain irrational functions which quite accurately describe the spatio-temporal nature of the processes occurring therein. However, such an accurate but complex mathematical representation is often not convenient from the practical point of view, and some approximation of the original model would be more useful. This paper discusses approximate rational transfer functions for a typical thick-walled double-pipe heat exchanger working in the parallel-flow configuration. Using the method of lines with the backward difference scheme, the original symmetric hyperbolic partial differential equations describing the heat transfer phenomena are transformed into a set of ordinary differential equations and expressed in the form of N subsystems representing spatial sections of the exchanger. Each section is described by a rational transfer function matrix and their cascade interconnection results in the overall approximation model expressed by a matrix of rational transfer functions of high order. Based on the rational transfer function representation, the frequency and steady-state responses of the approximate model are evaluated and compared with those resulting from its original irrational transfer function model. The presented results show better approximation quality for the “crossover” input–output channels where the in-domain heat conduction effects prevail as compared to the “straightforward” channels, where the transport delay associated with the heat convection dominates.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3