Abstract
In this paper, we study the problem of minimizing a general quadratic function subject to a quadratic inequality constraint with a fixed number of additional linear inequality constraints. Under a regularity condition, we first introduce two convex quadratic relaxations (CQRs), under two different conditions, that are minimizing a linear objective function over two convex quadratic constraints with additional linear inequality constraints. Then, we discuss cases where the CQRs return the optimal solution of the problem, revealing new conditions under which the underlying problem admits strong Lagrangian duality and enjoys exact semidefinite optimization relaxation. Finally, under the given sufficient conditions, we present necessary and sufficient conditions for global optimality of the problem and obtain a form of S-lemma for a system of two quadratic and a fixed number of linear inequalities.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献