Integration of Fluidic Nozzles in the New Low Emission Dual Fuel Combustion System for MGT Gas Turbines

Author:

Ćosić Bernhard,Waßmer Dominik,Genin Franklin

Abstract

Fluidic oscillators have proven their capabilities and advantages in terms of the generation of oscillating jets without moving parts for many years, mainly in experimental studies. In this paper, the design, development, and integration of fluidic atomizers into the liquid-fuel system of the dual-fuel low NOX Advanced Can Combustion (ACC) system of the MAN Gas Turbines (MGT) are presented. The two-stage system comprises a pressure-swirl nozzle as a pilot stage and an assembly of four main premixed nozzles, based on fluidic technology. The design and the features of the pilot nozzle are briefly presented, whereas the focus lies on the functionality and layout of the fluidic nozzles. The complete integration, validation, and verification of this innovative liquid-fuel injection unit are presented. The final system features fast fuel-switchovers, low complexity, high reliability, and dry low emissions in liquid-fuel operation.

Funder

Bundesministerium für Wirtschaft und Technologie

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference34 articles.

1. Gas Turbine Combustion;Lefebvre,2010

2. Atomization and Sprays;Lefebvre,2017

3. Review of modern low emissions combustion technologies for aero gas turbine engines

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance analysis method through process variable modeling to maintain top product quality on fuel gas scrubber performance: A case study of fuel gas scrubber 141-V-01;PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGY AND MULTIDISCIPLINE (ICATAM) 2021: “Advanced Technology and Multidisciplinary Prospective Towards Bright Future” Faculty of Advanced Technology and Multidiscipline;2023

2. Computational Characterization of Turbulent Flow in a Microfluidic Actuator;Applied Sciences;2022-04-01

3. Editorial for the Special Issue on “Fluidic Oscillators—Devices and Applications”;Fluids;2022-03-01

4. Free Stream Behavior of Hydrogen Released from a Fluidic Oscillating Nozzle;Fluids;2021-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3