Moored Flux and Dissipation Estimates from the Northern Deepwater Gulf of Mexico

Author:

Polzin Kurt L.ORCID,Wang BinbinORCID,Wang ZhankunORCID,Thwaites Fred,Williams Albert J.

Abstract

Results from a pilot program to assess boundary mixing processes along the northern continental slope of the Gulf of Mexico are presented. We report a novel attempt to utilize a turbulence flux sensor on a conventional mooring. These data document many of the features expected of a stratified Ekman layer: a buoyancy anomaly over a height less than that of the unstratified Ekman layer and an enhanced turning of the velocity vector with depth. Turbulent stress estimates have an appropriate magnitude and are aligned with the near-bottom velocity vector. However, the Ekman layer is time dependent on inertial-diurnal time scales. Cross slope momentum and temperature fluxes have significant contributions from this frequency band. Collocated turbulent kinetic energy dissipation and temperature variance dissipation estimates imply a dissipation ratio of 0.14 that is not sensibly different from canonical values for shear instability (0.2). This mixing signature is associated with production in the internal wave band rather than frequencies associated with turbulent shear production. Our results reveal that the expectation of a quasi-stationary response to quasi-stationary forcing in the guise of eddy variability is naive and a boundary layer structure that does not support recent theoretical assumptions concerning one-dimensional models of boundary mixing.

Funder

Gulf of Mexico Research Initiative

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Near-slope turbulence in a Rockall canyon;Deep Sea Research Part I: Oceanographic Research Papers;2024-04

2. Structure of the Bottom Boundary Current South of Iceland and Spreading of Deep Waters by Submesoscale Processes;Geophysical Research Letters;2024-02-26

3. References;Data Analysis Methods in Physical Oceanography;2024

4. Turbulent diapycnal fluxes as a pilot Essential Ocean Variable;Frontiers in Marine Science;2023-11-28

5. Editorial Summary: Boundary Layer Processes in Geophysical/Environmental Flows;Fluids;2023-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3