Author:
Sharifi Alireza,Bark David
Abstract
Von Willebrand factor (VWF) is a large multimeric hemostatic protein. VWF is critical in arresting platelets in regions of high shear stress found in blood circulation. Excessive cleavage of VWF that leads to reduced VWF multimer size in plasma can cause acquired von Willebrand syndrome, which is a bleeding disorder found in some heart valve diseases and in patients receiving mechanical circulatory support. It has been proposed that hemodynamics (blood flow) found in these environments ultimately leads to VWF cleavage. In the context of experiments reported in the literature, scission theory, developed for polymers, is applied here to provide insight into flow that can produce strong extensional forces on VWF that leads to domain unfolding and exposure of a cryptic site for cleavage through a metalloproteinase. Based on theoretical tensile forces, laminar flow only enables VWF cleavage when shear rate is large enough (>2800 s−1) or when VWF is exposed to constant shear stress for nonphysiological exposure times (>20 min). Predicted forces increase in turbulence, increasing the chance for VWF cleavage. These findings can be used when designing blood-contacting medical devices by providing hemodynamic limits to these devices that can otherwise lead to acquired von Willebrand syndrome.
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献