Wavelet-Based Adaptive Eddy-Resolving Methods for Modeling and Simulation of Complex Wall-Bounded Compressible Turbulent Flows

Author:

Ge Xuan,De Stefano GiulianoORCID,Hussaini M. Yousuff,Vasilyev Oleg V.ORCID

Abstract

This article represents the second part of a review by De Stefano and Vasilyev (2021) on wavelet-based adaptive methods for modeling and simulation of turbulent flows. Unlike the hierarchical adaptive eddy-capturing approach, described in the first part and devoted to high-fidelity modeling of incompressible flows, this companion paper focuses on the adaptive eddy-resolving framework for compressible flows in complex geometries, which also includes model-form adaptation from low to high fidelity models. A hierarchy of wavelet-based eddy-resolving methods of different fidelity has been developed for different speed regimes, various boundary conditions, and Reynolds numbers. Solutions of various fidelity are achieved using a range of modeling approaches from unsteady Reynolds-averaged Navier–Stokes simulation to delayed detached eddy simulation, wall-modeled and wall-resolved large eddy simulations. These novel methodologies open the door to construct a hierarchical approach for simulation of compressible flows covering the whole range of possibilities, from only resolving the average or dominant frequency, to capturing the intermittency of turbulence eddies, and to directly simulating the full turbulence spectrum. The generalized hierarchical wavelet-based adaptive eddy-resolving approach, once fully integrated into a single inherently interconnected simulation, results in being a very competitive and predictive tool for complicated flows in industrial design and analysis with high efficiency and accuracy.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference71 articles.

1. CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences;Slotnick,2014

2. Numerical Simulation of Turbulent Flows

3. Grid-point requirements for large eddy simulation: Chapman’s estimates revisited

4. Spectral Methods in Fluid Dynamics;Canuto,2012

5. Compact finite difference schemes with spectral-like resolution

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3