Machine Learning Techniques for Fluid Flows at the Nanoscale

Author:

Sofos FilipposORCID,Karakasidis Theodoros E.ORCID

Abstract

Simulations of fluid flows at the nanoscale feature massive data production and machine learning (ML) techniques have been developed during recent years to leverage them, presenting unique results. This work facilitates ML tools to provide an insight on properties among molecular dynamics (MD) simulations, covering missing data points and predicting states not previously located by the simulation. Taking the fluid flow of a simple Lennard-Jones liquid in nanoscale slits as a basis, ML regression-based algorithms are exploited to provide an alternative for the calculation of transport properties of fluids, e.g., the diffusion coefficient, shear viscosity and thermal conductivity and the average velocity across the nanochannels. Through appropriate training and testing, ML-predicted values can be extracted for various input variables, such as the geometrical characteristics of the slits, the interaction parameters between particles and the flow driving force. The proposed technique could act in parallel to simulation as a means of enriching the database of material properties, assisting in coupling between scales, and accelerating data-based scientific computations.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3