Low-Noise Synthetic Turbulence Tailored to Lateral Periodic Boundary Conditions

Author:

Rigall TommyORCID,Cotté BenjaminORCID,Lafon Philippe

Abstract

The present work is dedicated to turbulence synthesis tailored to lateral periodic boundary conditions for direct noise computations through compressible large eddy simulations. Synthetic turbulence can be essential for aeroacoustic applications when computing airfoil turbulent inflow noise or for accurately capturing the behavior of boundary layers. This behavior determines both trailing edge noise and complex flow structures such as laminar separation bubbles. For airfoil simulation purposes, spanwise periodic boundary conditions are usually considered. If synthetic perturbations are injected without observing the periodicity rule, strong spurious pressure waves are emitted and pollute the entire computational domain. In this work, the random Fourier modes method for turbulence generation is adapted in order to respect the spanwise periodicity constraint right at the computational domain inlet. This approach does not affect the turbulence properties such as the spectral shape and the turbulent kinetic energy decay. Since the emphasis is put on the generation and convection of the turbulence, only the turbulence convection region between the inlet and the airfoil is considered in this paper, without the airfoil. Two geometrical configurations are tested: the first one is a simple box with a constant mesh size, and the second one concentrates the fine cells on the area in front of the airfoil. In the second configuration, the computational cost is reduced by up to 25%, but more spurious noise is present because of interpolation areas between different grids using the Chimera method. Finally, the results’ reproducibility is assessed using different turbulence realizations.

Funder

Direction Générale pour l'Armement

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3