Nanoparticle Delivery in Prostate Tumors Implanted in Mice Facilitated by Either Local or Whole-Body Heating

Author:

Gu Qimei,Dockery Lance,Daniel Marie-Christine,Bieberich Charles J.,Ma Ronghui,Zhu Liang

Abstract

This work discusses in vivo experiments that were performed to evaluate whether local or whole-body heating to 40 °C reduced interstitial fluid pressures (IFPs) and enhanced nanoparticle delivery to subcutaneous PC3 human prostate cancer xenograft tumors in mice. After heating, 0.2 mL of a previously developed nanofluid containing gold nanoparticles (10 mg Au/mL) was injected via the tail vein. The induced whole-body hyperthermia led to increases in tumor and mouse body blood perfusion rates of more than 50% and 25%, respectively, while the increases were much smaller in the local heating group. In the whole-body hyperthermia groups, the IFP reduction from the baseline at the tumor center immediately after heating was found to be statistically significant when compared to the control group. The 1 h of local heating group showed IFP reductions at the tumor center, while the IFPs increased in the periphery of the tumor. The intratumoral gold nanoparticle accumulation was quantified using inductively coupled plasma mass spectrometry (ICP-MS). Compared to the control group, 1 h or 4 h of experiencing whole-body hyperthermia resulted in an average increase of 51% or 67% in the gold deposition in tumors, respectively. In the 1 h of local heating group, the increase in the gold deposition was 34%. Our results suggest that 1 h of mild whole-body hyperthermia may be a cost-effective and readily implementable strategy for facilitating nanoparticle delivery to PC3 tumors in mice.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3