Numerical Investigation of High-Reynolds-Number Air-Ventilated Water Flow under Solid Body with Surface Geometry Variations

Author:

Matveev Konstantin I.ORCID,Collins Jeffrey M.

Abstract

Air-ventilated cavities formed under or around the hulls of marine vehicles can reduce water drag. Hull configurations with partial air ventilation where air cavities reattach to body surfaces are of special practical interest, since the required air supply rates to achieve significant drag reduction can be made rather low. However, formation and stability of such air cavities are sensitive to the hull geometry and operational conditions. In this study, an attempt is made to numerically simulate one setup with a partial air cavity that was previously tested experimentally at high Reynolds numbers, above 50 million. A computational fluid dynamics software Star-CCM+ has been employed for numerical modeling. Stable and unstable states of the air-cavity setup, characterized by long and collapsing air cavities, respectively, were modeled at two air supply rates near the stability boundary. Numerical results were similar to experimental data at the optimal water speed for the tested geometry, when a long air cavity was sustained at a minimal air supply rate. For water speeds that were substantially higher or lower than the optimal case, a stable cavity could not be maintained with small air supply rates for the given hull geometry. Numerical simulations demonstrated how alterations of the body surface could help sustain long air cavities across a broader speed range using air supply rates that were similar to the optimal case. These findings suggest that morphing hull surfaces can potentially be used for control of drag-reducing air cavities and expand the viable operating range for their application to marine vehicles.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference29 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3