A Momentum-Conserving Scheme for Flow Simulation in 1D Channel with Obstacle and Contraction

Author:

Swastika Putu VeriORCID,Pudjaprasetya Sri RedjekiORCID,Wiryanto Leo Hari,Hadiarti Revi NurfathhiyahORCID

Abstract

We consider the extension of the momentum conservative staggered-grid (MCS) scheme for flow simulation in channels with varying depth and width. The scheme is formulated using the conservative properties of the Saint-Venant equations. The proposed scheme was successful in handling various steady flows and achieved results that are in complete accordance with the analytical steady solutions. Different choices of boundary conditions have created steady solutions according to the mass and energy conservations. This assessment has served as a validation of the proposed numerical scheme. Further, in a channel with a contraction and a nonuniform bed, we simulate two cases of dam break. The simulation results show a good agreement with existing experimental data. Moreover, our scheme, that uses a quasi-1-dimensional approach, has shown some fair agreement with existing 2-dimensional numerical results. This evaluation demonstrates the merits of the MCS scheme for various flow simulations in channels of varying width and bathymetry, suitable for river flow modeling.

Funder

Institut Teknologi Bandung

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3