CFD Model for Aircraft Ground Deicing: Verification and Validation of an Extended Enthalpy-Porosity Technique in Particulate Two Phase Flows

Author:

Ernez SamiORCID,Morency FrançoisORCID

Abstract

Researchers have focused in the last five years on modelling the aircraft ground deicing process using CFD (computational fluid dynamics) in order to reduce its costs and pollution. As preliminary efforts, those studies did not model the ice melting nor the diffusion between deicing fluids and water resulting from the melting process. This paper proposes a CFD method to simulate this process filling these gaps. A particulate two-phase flow approach is used to model the spray impact on ice near the contaminated surface. Ice melting is modelled using an extended version of the enthalpy-porosity technique. The water resulting from the melting process is diffused into the deicing fluid forming a single-phase film. This paper presents a new model of the process. The model is verified and validated through three steps. (i) verification of the species transport. (ii) validation of the transient temperature field of a mixture. (iii) validation of the convective heat transfer of an impinging spray. The permeability coefficient of the enthalpy-porosity technique is then calibrated. The proposed model proved to be a suitable candidate for a parametric study of the aircraft ground deicing process. On the validation test cases, the precision of heat transfer prediction exceeds 88%. The model has the ability of predicting the deicing time and the deicing fluid quantities needed to decontaminate a surface.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference42 articles.

1. Heat and Mass Transfer in the Case of Anti-Icing System Simulation

2. Three-Dimensional Integrated Thermodynamic Simulation for Wing Anti-Icing System

3. Commission of Inquiry into the Air Ontario Crash at Dryden, Ontario: Final Report: Technical Appendices;Moshansky,1992

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3