Heat and Mass Transfer Analysis on Magneto Micropolar Fluid Flow with Heat Absorption in Induced Magnetic Field

Author:

Haque Md. MohidulORCID

Abstract

Heat and mass transfer due to a magneto micropolar fluid flow along a semi-infinite vertical plate bounded by a porous medium are investigated in presence of induced magnetic field. In case of cooling flow, heat and mass fluxes from the plate are subjected to be constant under the action of a constant heat sink. Mathematical model related to the problem is developed from the basis of studying magnetohydrodynamics (MHD) for both lighter and heavier particles. Dimensionless model of momentum, microrotation, induction, energy and concentration equations are solved simultaneously by the explicit scheme of finite difference technique. According to the obtained stability and convergence criteria of this transient flow, very negligible time step (Δt = 0.002) compared to the existing works has been taken to perform the numerical computation. Quantities of chief physical interest of the flow as shear stress, couple stress, current density, Nusselt number and Sherwood number are also studied here. The numerically computed results are compared with published results of available research works. Interestingly an excellent agreement is found with finite difference solutions in both explicit and implicit schemes. In order to discuss the physical aspects of the problem, the flow variables for different values of associated parameters are illustrated in graphs. Finally, important findings of the study are listed as concluding remarks.

Funder

Ministry of Science and Technology, Government of the People’s Republic of Bangladesh

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3