Performance Investigation of MQL Parameters Using Nano Cutting Fluids in Hard Milling

Author:

Duc Tran MinhORCID,Long Tran TheORCID,Tuan Ngo MinhORCID

Abstract

Machining difficult-to-cut materials is one of the increasingly concerned issues in the metalworking industry. Low machinability and high cutting temperature generated from the contact zone are the main obstacles that need to be solved in order to improve economic and technical efficiency but still have to ensure environmental friendliness. The application of MQL method using nano cutting fluid is one of the suggested solutions to improve the cooling and lubricating performance of pure-MQL for machining difficult-to-cut materials. The main objective of this paper is to investigate the effects of nanofluid MQL (NFMQL) parameters including the fluid type, type of nanoparticles, air pressure and air flow rate on cutting forces and surface roughness in hard milling of 60Si2Mn hardened steel (50–52 HRC). Analysis of variance (ANOVA) was implemented to study the effects of investigated variables on hard machining performance. The most outstanding finding is that the main effects of the input variables and their interaction are deeply investigated to prove the better machinability and the superior cooling lubrication performance when machining under NFMQL condition. The experimental results indicate that the uses of smaller air pressure and higher air flow rate decrease the cutting forces and improve the surface quality. Al2O3 nanoparticles show the better results than MoS2 nanosheets. The applicability of soybean oil, a type of vegetable oil, is proven to be enlarged in hard milling by suspending nanoparticles, suitable for further studies in the field of sustainable manufacturing.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3