Abstract
The present investigation aims to examine the heat flux mechanism in the hagnetohydrodynamic (MHD) mixed convective flow of Williamson-type fluid across an exponential stretching porous curved surface. The significant role of thermal conductivity (variable), non-linear thermal radiation, unequal source-sink, and Joules heating is considered. The governing problems are obtained using the Navier–Stokes theory, and the appropriate similarity transformation is applied to write the partial differential equations in the form of single-variable differential equations. The solutions are obtained by using a MATLAB-based built-in bvp4c package. The vital aspect of this analysis is to observe the effects of the curvature parameter, magnetic number, suction/injection parameter, permeability parameter, Prandtl factor, Eckert factor, non-linear radiation parameter, buoyancy parameter, temperature ratio parameter, Williamson fluid parameter, and thermal conductivity (variable) parameter on the velocity field, thermal distribution, and pressure profile which are discussed in detail using a graphical approach. The correlation with the literature reveals a satisfactory improvement in the existing results on permeability factors in Williamson fluids.
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献