Microalgae-Mediated Biosorption for Effective Heavy Metals Removal from Wastewater: A Review

Author:

Mahlangu Dumisane1,Mphahlele Keletso1,De Paola Francesco2ORCID,Mthombeni Nomcebo Happiness3ORCID

Affiliation:

1. Department of Chemical Engineering, School of Engineering, College of Science, Engineering, and Technology (CSET), University of South Africa, Florida Campus, Johannesburg 1709, South Africa

2. Department of Civil, Architecture and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy

3. Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Steve Biko Campus, Musgrave Durban 4001, South Africa

Abstract

Environmental contamination by heavy metals poses significant threats to terrestrial and aquatic ecosystems, necessitating the development of effective remediation strategies. Conventional methods for heavy metal removal exhibit limitations, including inadequate efficiency and elevated costs. In this context, microalgae have emerged as a promising bioremediation approach due to their robust metal-binding capabilities, specifically through biosorption. This review comprehensively examines the role of microalgae in addressing heavy metal pollution, with a primary focus on their effective removal from wastewater. Microalgae offer wastewater purification potential across diverse sources and capitalize on wastewater as a growth matrix, yielding valuable bioproducts, biomaterials, and bioenergy. Their versatility allows them to thrive in various wastewaters, facilitating effective contaminant removal. This study also investigates the application of microalgae in decentralized water treatment systems (DWTSs), where the decentralized nature of these systems proves advantageous in addressing heavy metal contaminants directly at the point of generation or use. This approach holds particular significance in regions where centralized systems face obstacles due to geographical constraints, inadequate infrastructure, or financial limitations. DWTSs not only provide a decentralized solution for heavy metals removal but also prove advantageous in disaster relief scenarios and rapidly growing urban areas.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3