Rice Terraces Enhanced the Hydrological Stability of Small Watershed with LUCC—A Case Study of Xinhua Basin

Author:

Deng Chuxiong12,Li Yaqun12,Liu Yaojun12,Liu Changchang12,Zhang Guangjie12

Affiliation:

1. School of Geographic Sciences, Hunan Normal University, Changsha 410081, China

2. Hunan Provincial Key Laboratory for Eco-Environmental Changes and Carbon Sequestration of the Dongting Lake Basin, Hunan Normal University, Changsha 410081, China

Abstract

Rice terraces are crucial for agriculture in China’s southern mountainous regions. Land use and land cover change (LUCC) in these areas impact hydrology, but our understanding is limited. In this study, we applied the hydrological assessment tool SWAT to a selected small watershed in the rice terrace-dense area of central Hunan province, China. This study covered four LUCC periods over the past 40 years and was simulated at annual and monthly scales. The results showed that from 1980 to 2020, the areas of paddy fields and drylands decreased by 4.19% and 5.76%, respectively, while the areas of forests and construction land increased by 1.14% and 92.48%, respectively. During the past period, LUCC led to a decrease of 1.77% and 2.49% in runoff and infiltration, respectively, and an increase of 1.03% in ET. However, the water yield remained almost unchanged, indicating that the rice terrace plays a positive role in maintaining stable watershed water yield under LUCC. The results of the sub-basin analysis indicated that the transformation of paddy fields and forests directly determines the trend of hydrological changes. Land use type had the most significant impact on the runoff of the rice-terrace watershed, with the proportions of paddy fields and forests being the most influential factors. Paddy fields significantly influenced the stability of runoff at the watershed scale, suggesting that a high paddy field ratio doesn’t ensure sustainability. This study offers valuable insights for managing small watershed terraces, land use planning, and achieving sustainable development in the watershed.

Funder

National Natural Science Foundation of China

Research Foundation of the Department of Natural Resources of Hunan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3