Soil Salt and Water Regulation in Saline Agriculture Based on Physical Measures with Model Analysis

Author:

Fu Wenyuan1ORCID,Yu Jinyi2,Hu Qiuli2,Wang Haixia1,Zhao Ying2ORCID

Affiliation:

1. School of Hydraulic Engineering, Ludong University, Yantai 264025, China

2. School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China

Abstract

Enhancing crop production in the saline regions of the Yellow River Delta (YRD), where shallow saline groundwater is prevalent, hinges on optimizing water and salt conditions in the root zone. This study explored the effects of various physical methods on soil water and salt dynamics during the cotton growing season in these saline areas. Three approaches were tested: plastic film mulching (FM), plastic film mulching with an added compacted soil layer (FM+CL), and ridge-furrow planting (RF). The HYDRUS-2D model (Version 3.02) was used to analyze changes in soil water and salt content in the root zone over time. The results showed that subsoil compaction significantly lowered salt build-up in the root zone, especially in the top 20 cm. Film mulching was crucial for reducing water loss in the Yellow River Delta. Crop transpiration increased by 7.0% under FM and 10.5% under FM+CL compared to RF planting. Additionally, FM+CL reduced soil salinity in the top 10 cm by 11.5% at cotton harvest time compared to FM alone. The study concludes that combining film mulching with a soil compaction layer is a promising strategy for local farmers, addressing soil water retention, salt management, and boosting cotton yields.

Funder

Key Program of the National Natural Science Foundation of China

Taishan Scholars Youth Expert Program, China

National Natural Foundation of Shandong Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3