Green Artificial Intelligence: Towards an Efficient, Sustainable and Equitable Technology for Smart Cities and Futures

Author:

Yigitcanlar TanORCID,Mehmood RashidORCID,Corchado Juan M.ORCID

Abstract

Smart cities and artificial intelligence (AI) are among the most popular discourses in urban policy circles. Most attempts at using AI to improve efficiencies in cities have nevertheless either struggled or failed to accomplish the smart city transformation. This is mainly due to short-sighted, technologically determined and reductionist AI approaches being applied to complex urbanization problems. Besides this, as smart cities are underpinned by our ability to engage with our environments, analyze them, and make efficient, sustainable and equitable decisions, the need for a green AI approach is intensified. This perspective paper, reflecting authors’ opinions and interpretations, concentrates on the “green AI” concept as an enabler of the smart city transformation, as it offers the opportunity to move away from purely technocentric efficiency solutions towards efficient, sustainable and equitable solutions capable of realizing the desired urban futures. The aim of this perspective paper is two-fold: first, to highlight the fundamental shortfalls in mainstream AI system conceptualization and practice, and second, to advocate the need for a consolidated AI approach—i.e., green AI—to further support smart city transformation. The methodological approach includes a thorough appraisal of the current AI and smart city literatures, practices, developments, trends and applications. The paper informs authorities and planners on the importance of the adoption and deployment of AI systems that address efficiency, sustainability and equity issues in cities.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3