Insights into the Fabrication and Electrochemical Aspects of Paper Microfluidics-Based Biosensor Module

Author:

Kumari Rohini1ORCID,Singh Akanksha1,Azad Uday Pratap2ORCID,Chandra Pranjal1ORCID

Affiliation:

1. Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India

2. Laboratory of Nanoelectrochemistry, Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur 495009, Chhattisgarh, India

Abstract

Over the past ten years, microfluidic paper-based analytical devices (micro-PADs) have attracted a lot of attention as a viable analytical platform. It is expanding as a result of advances in manufacturing processes and device integration. Conventional microfluidics approaches have some drawbacks, including high costs, lengthy evaluation times, complicated fabrication, and the necessity of experienced employees. Hence, it is extremely important to construct a detection system that is quick, affordable, portable, and efficient. Nowadays, micro-PADs are frequently employed, particularly in electrochemical analyses, to replicate the classic standard laboratory experiments on a miniature paper chip. It has benefits like rapid assessment, small sample consumption, quick reaction, accuracy, and multiplex function. The goal of this review is to examine modern paper microfluidics-based electrochemical sensing devices for the detection of macromolecules, small molecules, and cells in a variety of real samples. The design and fabrication of micro-PADs using conventional and the latest techniques have also been discussed in detail. Lastly, the limitations and potential of these analytical platforms are examined in order to shed light on future research.

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3