Elderly Fall Detection Based on GCN-LSTM Multi-Task Learning Using Nursing Aids Integrated with Multi-Array Flexible Tactile Sensors

Author:

Li Tong1ORCID,Yan Yuhang1ORCID,Yin Minghui23,An Jing1,Chen Gang1,Wang Yifan4,Liu Chunxiu23ORCID,Xue Ning23

Affiliation:

1. School of Modern Post (School of Automation), Beijing University of Posts and Telecommunications, Beijing 100876, China

2. State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China

3. School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100190, China

4. School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

Due to the frailty of elderly individuals’ physical condition, falling can lead to severe bodily injuries. Effective fall detection can significantly reduce the occurrence of such incidents. However, current fall detection methods heavily rely on visual and multi-sensor devices, which incur higher costs and complex wearable designs, limiting their wide-ranging applicability. In this paper, we propose a fall detection method based on nursing aids integrated with multi-array flexible tactile sensors. We design a kind of multi-array capacitive tactile sensor and arrange the distribution of tactile sensors on the foot based on plantar force analysis and measure tactile sequences from the sole of the foot to develop a dataset. Then we construct a fall detection model based on a graph convolution neural network and long-short term memory network (GCN-LSTM), where the GCN module and LSTM module separately extract spatial and temporal features from the tactile sequences, achieving detection on tactile data of foot and walking states for specific time series in the future. Experiments are carried out with the fall detection model, the Mean Squared Error (MSE) of the predicted tactile data of the foot at the next time step is 0.0716, with the fall detection accuracy of 96.36%. What is more, the model can achieve fall detection on 5-time steps with 0.2-s intervals in the future with high confidence results. It exhibits outstanding performance, surpassing other baseline algorithms. Besides, we conduct experiments on different ground types and ground morphologies for fall detection, and the model showcases robust generalization capabilities.

Funder

Beijing Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3