Green Roofs Affect the Floral Abundance and Phenology of Four Flowering Plant Species in the Western United States

Author:

Ruszkowski Kyle Michael1,Bousselot Jennifer McGuire2ORCID

Affiliation:

1. Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA

2. Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA

Abstract

This study investigates the potential for green roofs to support pollinator diversity and abundance in urban ecosystems through the altered floral phenology and floral abundance of plants. Floral phenology and the floral abundance of green roof plants are compared to plants grown at grade on the Front Range in Fort Collins, Colorado, and how these changes may affect pollinator biodiversity in urban ecosystems. An independent block design is employed, within one green roof and one ground-level garden, approximately 120 m apart, with replicate plants of 4 species in each garden. Pollinator observations were made weekly during the bloom period for each species. Blue vane traps were used to passively measure pollinator diversity along a transect between the green roof sites and the sites at grade. The total number of flowers per plant is variable between site types, depending on the plant species. However, all species of plants tested bloomed earlier when grown on the green roof than when grown at grade. Pollinator abundance and diversity were low at both site locations. Green roofs may provide foraging opportunities earlier in the season in temperate regions, which can extend the duration of floral foraging opportunities when supported by green infrastructure at grade.

Publisher

MDPI AG

Reference21 articles.

1. How many flowering plants are pollinated by animals?;Ollerton;Oikos,2011

2. Safeguarding pollinators and their values to human well-being;Potts;Nature,2016

3. Global pollinator declines: Trends, impacts and drivers;Potts;Trends Ecol. Evol.,2010

4. The bees of Colorado;Scott;Nat. Hist. Inventory Colo.,2011

5. Climate-associated phenological advances in bee pollinators and bee-pollinated plants;Bartomeus;Proc. Natl. Acad. Sci. USA,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3