Field-Emission Energy Distribution of Carbon Nanotube Film and Single Tube under High Current

Author:

Wang Lizhou1ORCID,Wu Yiting1,Jiang Jun1,Tang Shuai1ORCID,Ke Yanlin1,Zhang Yu1ORCID,Deng Shaozhi1ORCID

Affiliation:

1. State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China

Abstract

A narrow energy distribution is a prominent characteristic of field-emission cold cathodes. When applied in a vacuum electronic device, the cold cathode is fabricated over a large area and works under a high current and current density. It is interesting to see the energy distribution of the field emitter under such a working situation. In this work, the energy distribution spectra of a single carbon nanotube (CNT) and a CNT film were investigated across a range of currents, spanning from low to high. A consistent result indicated that, at low current emission, the CNT film (area: 0.585 mm2) exhibited a narrow electron energy distribution as small as 0.5 eV, similar to that of a single CNT, while the energy distribution broadened with increased current and voltage, accompanied by a peak position shift. The influencing factors related to the electric field, Joule heating, Coulomb interaction, and emission site over a large area were discussed to elucidate the underlying mechanism. The results provide guidance for the electron source application of nano-materials in cold cathode devices.

Funder

National Key Basic Research Program of China

National Natural Science Foundation of China

Science and Technology Department of Guangdong Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3