Towards High-Performance Photo-Fenton Degradation of Organic Pollutants with Magnetite-Silver Composites: Synthesis, Catalytic Reactions and In Situ Insights

Author:

Nchimi Nono Katia12,Vahl Alexander34,Terraschke Huayna14ORCID

Affiliation:

1. Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118 Kiel, Germany

2. Department of Inorganic Chemistry, Faculty of Science, University of Yaoundé, Yaoundé P.O. Box 812, Cameroon

3. Department for Material Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany

4. Kiel Nano, Surface and Interface Science (KiNSIS), Christian-Albrechts-Platz 4, 24118 Kiel, Germany

Abstract

In this study, Fe3O4/Ag magnetite-silver (MSx) nanocomposites were investigated as catalysts for advanced oxidation processes by coupling the plasmonic effect of silver nanoparticles and the ferromagnetism of iron oxide species. A surfactant-free co-precipitation synthesis method yielded pure Fe3O4 magnetite and four types of MSx nanocomposites. Their characterisation included structural, compositional, morphological and optical analyses, revealing Fe3O4 magnetite and Ag silver phases with particle sizes ranging from 15 to 40 nm, increasing with the silver content. The heterostructures with silver reduced magnetite particle aggregation, as confirmed by dynamic light scattering. The UV–Vis spectra showed that the Fe:Ag ratio strongly influenced the absorbance, with a strong absorption band around 400 nm due to the silver phase. The oxidation kinetics of organic pollutants, monitored by in situ luminescence measurements using rhodamine B as a model system, demonstrated the higher performance of the developed catalysts with increasing Ag content. The specific surface area measurements highlighted the importance of active sites in the synergistic catalytic activity of Fe3O4/Ag nanocomposites in the photo-Fenton reaction. Finally, the straightforward fabrication of diverse Fe3O4/Ag heterostructures combining magnetism and plasmonic effects opens up promising possibilities for heterogeneous catalysis and environmental remediation.

Funder

Alexander von Humboldt Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3