Exploring the Synergistic Mechanisms of Nanopulsed Plasma Bubbles and Photocatalysts for Trimethoprim Degradation and Mineralization in Water

Author:

Tsokanas Dimitris12,Aggelopoulos Christos A.1ORCID

Affiliation:

1. Laboratory of Cold Plasma and Advanced Techniques for Improving Environmental Systems, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504 Patras, Greece

2. Chemistry Department, University of Patras, 26504 Patras, Greece

Abstract

In this study, the synergetic action of nanopulsed plasma bubbles (PBs) and photocatalysts for the degradation/mineralization of trimethoprim (TMP) in water was investigated. The effects of ZnO or TiO2 loading, plasma gas, and initial TMP concentration were evaluated. The physicochemical characterization of plasma-treated water, the quantification of plasma species, and the use of appropriate plasma species scavengers shed light on the plasma-catalytic mechanism. ZnO proved to be a superior catalyst compared to TiO2 when combined with plasma bubbles, mainly due to the increased production of ⋅OH and oxygen species resulting from the decomposition of O3. The air–PBs + ZnO system resulted in higher TMP degradation (i.e., 95% after 5 min of treatment) compared to the air–PBs + TiO2 system (i.e., 87%) and the PBs-alone process (83%). The plasma gas strongly influenced the process, with O2 resulting in the best performance and Ar being insufficient to drive the process. The synergy between air–PBs and ZnO was more profound (SF = 1.7), while ZnO also promoted the already high O2–plasma bubbles’ performance, resulting in a high TOC removal rate (i.e., 71%). The electrical energy per order in the PBs + ZnO system was very low, ranging from 0.23 to 0.46 kWh/m3, depending on the plasma gas and initial TMP concentration. The study provides valuable insights into the rapid and cost-effective degradation of emerging contaminants like TMP and the plasma-catalytic mechanism of antibiotics.

Funder

Hellenic Foundation for Research and Innovation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3